On maximal resonance of polyomino graphs

Saihua Liu • Jianping Ou

Received: 20 March 2012 / Accepted: 10 October 2012 / Published online: 21 October 2012
© Springer Science+Business Media New York 2012

Abstract

A polyomino graph is a finite plane 2-connected bipartite graph every interior face of which is bounded by a regular square of side length one. Let k be a positive integer, a polyomino graph G is k-resonant if the deletion of any $i \leq k$ vertex-disjoint squares from G results in a graph either having perfect matchings or being empty. If graph G is k-resonant for any integer $k \geq 1$, then it is called maximally resonant. All maximally resonant polyomino graphs are characterized in this work. As a result, the least integer k such that a k-resonant polyomino graph is maximally resonant is determined.

Keywords Polyomino graph $\cdot k$-resonance \cdot Maximal resonance

1 Introduction

The concept of resonance originates from the conjugated circuits method which was early found in [30] and [9,10]. Conjugated circuits were also found in Clar's aromatic sextet theory [6] and Randić's conjugated circuit model [21-25]. Klein [13] emphasized the connection of Clar's ideas with the conjugated circuits method. In mathematics [19], a conjugated circuit is named an alternating cycle. A matching (resp. perfect matching) of a graph is a set of its edges such that every vertex of the graph is incident with at most (resp. exactly) one edge in this set. For a graph G with

[^0]a matching M, an M-alternating cycle is a cycle of which the edges appear alternately in and out of M.

This work studies the maximal resonance of polyomino graphs [1], also called square-cell configurations [8] or chess-boards [3], which are finite plane connected bipartite graphs with every interior face being bounded by a regular square of side length one. Let k be a positive integer, a polyomino graph G is k-resonant if delete any $i \leq k$ vertex-disjoint squares from G, i.e., delete the edges and vertices of the squares together with all the edges incident with some of the deleted vertices, the remained graph has a perfect matching or is empty. In other words, G is k-resonant if for any $i \leq k$ vertex-disjoint squares, there is a perfect matching M such that these i squares are all M-alternating cycles. A polyomino graph is called maximally resonant if it is k-resonant for any integer $k \geq 1$. Clearly, polyomino graphs containing cut-vertices are not 1-resonant. And so, all polyomino graphs are assumed 2-connected in what follows.

Polyomino graphs have useful applications in statistical physics and in modeling problems of surface chemistry (please refer to ref. [8] and the references therein). They are also modelings of many interesting combinatorial subjects, such as hypergraphs [1], domination problem [3], rook polynomials [20], etc. In fact, problems based on perfect matchings was extensively studied on fragments of the square-planar net $[4,11,15,26,35]$. Also, Kivelson developed the conjugated circuits method for the polyomino graphs [12].

On the other hand, k-resonance of molecular graphs have been investigated extensively $[7,14,16,17,27,28,31-33,37]$, but the 2-resonance for benzenoid systems, open-ended nanotubes and carbon fullerenes remains unknown. For advances on maximal resonance of graphs, it is known that if a benzenoid system is 3-resonant then it is maximally resonant [37]. This conclusion is also true for coronoid systems [5], open-end nanotubes [32], toroidal polyhexes [27,34], Klein-bottle polyhexes [28] and fullerene graphs [31], B-N fullerene graphs [33], generalized benzenoid systems and generalized B-N fullerene graphs [18,29].

For a class of graphs, if n is the least integer such that every n-resonant graph in the class is maximally resonant, then to completely characterize the k-resonance of these graphs, it suffices to characterize the k-resonance for every integer $k \leq n$. And so, it is important to determine this least integer n. For 2-connected polyomino graphs, by characterizing all these maximally resonant graphs it is shown in this work that this integer $n=4$. We shall present the main results of this work in Sect. 2, their proofs are presented in the last section. As preliminaries, the k-resonance of polyomino graphs $P_{m} \times P_{n}(m, n \geq 2)$ are presented in Sect. 3 .

Before proceeding, we need to introduce some more symbols and terminologies. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. A graph G^{\prime} is a subgraph of G, denoted by $G^{\prime} \subseteq G$, if $V\left(G^{\prime}\right) \subseteq V(G)$ and $E\left(G^{\prime}\right) \subseteq E(G)$. $|V(G)|$ denotes the number of vertices of G. A catacondensed polyomino graph is a polyomino graph every vertex of which lies on the boundary of the outer face. For other symbols and terminologies not specified herein, we follow that of [2].

2 Main results

Before presenting the main results, we introduce some special classes of graphs. The Cartesian product $P_{m} \times P_{n}$ of paths P_{m} and P_{n} is called a regular polyomino graph, where ($m, n \geq 2$). For clarity, regular polyomino graph $P_{4} \times P_{5}$ is shown in Fig. 1. Particularly, if $\{m, n\} \cap\{2\} \neq \emptyset$, we call the regular polyomino graph a ladder graph.

Another special graph G_{0} and two possible fragments of graphs are depicted in Fig. 2. With these terminologies we can now list our main results as follows.

Theorem 2.1 For any given integer $k \geq 4$, a polyomino graph G is k-resonant if and only if either $G \cong G_{0}$, or each maximal regular polyomino subgraph $P_{m} \times P_{n}$ has $\{m, n\} \cap\{2,4\} \neq \emptyset$ such that the adjacent squares of a $P_{4} \times P_{n}(n \geq 3)$ can only exist on the positions illustrated in B or C of Fig. 2 and any pair of $P_{2} \times P_{n_{1}}$ and $P_{2} \times P_{n_{2}}$ are either disjoint or share exactly one square.

As a direct consequence of Theorem 2.1, we have the following corollary.
Corollary 2.2 A polyomino graph is maximally resonant if and only if it is 4-resonant.

Fig. 1 A regular polyomino graph $P_{4} \times P_{5}$

(a)

(b)

(c)

Fig. 2 a , $G_{0} . a, b, c, d$ and e, f are the possible adjacent squares of $P_{4} \times P_{n}(n \geq 3)$ and $P_{4} \times P_{4}$ in (b) and (c), respectively

Theorem 2.3 The least positive integer k such that every polyomino graph is maximally resonant if and only if it is k-resonant is 4 .

3 Preliminary

For any positive integer $k \geq 1$, a k-resonant polyomino graph contains perfect matchings. And so, it has an even number of vertices.

Lemma 3.1 A 2-connected catacondensed polyomino graph G is maximally resonant if and only if any pair of its maximal ladder graphs are either disjoint or share exactly one square.

Proof Necessity: Suppose that two different maximal ladder graphs L_{1} and L_{2} of G are neither disjoint nor share one square. Since G is catacondensed and 2-connected, $L_{1} \cap L_{2}$ is an edge, say e. Refer to Fig. 3a where the squares are labeled. Let H_{1} be the component of $G-a_{1}-b_{1}$ that contains v and H_{2} the union of components of $G-b$ that are subgraphs of H_{1}. Then $\left|V\left(H_{2}\right)\right|=\left|V\left(H_{1}\right)\right|-1$. Hence, at least one of H_{1} and the components of H_{2} is odd. Then G is not maximally resonant.

Sufficiency: We use induction on the number of squares of G. It is not difficult to see that it holds for the trivial case when G is a single square. Suppose G contains more than one square. Let $F \neq \emptyset$ be an arbitrary set of vertex-disjoint squares of G and $f \in F$. Since G does not contain the structure of Fig. 3a, we distinguish the following three cases.

Case 1. f belongs to exactly one maximal ladder graph in G and is disjoint to any other one. Then $G-f$ consists of smaller catacondensed polyomino graphs and independent edges. By the induction hypothesis, $G-F$ has perfect matchings.

Case 2. $\quad f$ belongs to two maximal ladder graphs of G. Similar to case $1, G-F$ has perfect matchings.

Case 3. f belongs to one maximal ladder graph L but is adjacent to other ones, say possibly L_{1} and L_{2} as illustrated in Fig. 3b. Then $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \cap F=\emptyset$. Then the

Fig. 3 Illustration for the proof of Lemma 3.1

Fig. 4 a $P_{3} \times P_{n}(n>4)$; b $P_{m} \times P_{n}(m, n>4)$

(a)

(b)

Fig. $5 \quad P_{4} \times P_{n}(n \geq 3)$ and one of its perfect matchings M
remained graph by cutting edges $e_{1}, e_{2}, e_{3}, e_{4}$ in $G-F$ consists of smaller catacondensed polyomino graphs and independent edges. By the induction hypothesis, $G-F$ has perfect matchings.

Since F is arbitrarily chosen, G is maximally resonant.
In fact, the structure in Fig. 3a is forbidden in all maximally resonant polyomino graphs.

For the maximal resonance of regular polyomino graphs $P_{m} \times P_{n}(m, n \geq 2)$, we have the follow conclusion.

Lemma 3.2 $P_{m} \times P_{n}(m, n \geq 2)$ is maximally resonant if and only if $\{m, n\} \cap$ $\{2,4\} \neq \emptyset$.

Proof Necessity: Suppose on the contrary that $\{m, n\} \cap\{2,4\}=\emptyset$. If $m=3$, since $P_{3} \times P_{n}$ is maximally resonant, it has an even number of vertices. Hence $n(>4)$ is even. Let h_{1} and h_{2} be the two squares illustrated in Fig. 4a. Then $P_{3} \times P_{n}-h_{1}-h_{2}$ consists of two odd components, which contradicts the maximal resonance of $P_{m} \times P_{n}$. Symmetrically, $n \neq 3$.

If $m, n \geq 5$, let h_{1}, h_{2} and h_{3} be the three squares illustrated in Fig. 4b, then $P_{m} \times P_{n}-h_{1}-h_{2}-h_{3}$ contains a component of five vertices. The necessity follows from this contradiction.

Sufficiency: By Lemma 3.1, it suffices to consider the case when $m=4$ and $n \geq 3$. Let us label the squares of $P_{4} \times P_{n}$ with three distinct rows and $n-1$ columns as in Fig. 5, where a perfect matching M is also illustrated by the double edges.

Fig. $6 \quad H_{1}-F$ has a perfect matching $\left\{e^{\prime}, e^{\prime \prime}\right\}$, where the squares inserted cycles belong to F

Fig. $7 v$ is an isolated vertex when delete the four squares inserted cycles

Let F be any set of vertex-disjoint squares of $P_{4} \times P_{n}, H$ be the subgraph of $P_{4} \times P_{n}$ induced by all the columns containing at least one square of F and write $H^{\prime}=P_{4} \times P_{n}-H$. Clearly, every component of H or H^{\prime} is isomorphic to $P_{4} \times P_{n_{i}}$ for some $n_{i} \geq 1$. Firstly, $M_{0}=M \cap E\left(H^{\prime}\right)$ is a perfect matching of H^{\prime} whenever H^{\prime} is not empty. Secondly, we shall show in what follows that for any component H_{1} of H, either $H_{1}-F$ is empty or it also has perfect matchings and so the lemma follows.

If H_{1} consists of one column, then $H_{1}-F$ is empty or has a perfect matching. Now consider the case when H_{1} consists of at least two columns. It is not difficult to see that each column of H_{1} contains a unique square of F and that all these squares must lie in row r_{1} and row r_{3} alternatively as in Fig. 6. No matter whether H_{1} has an odd or even number of columns, $H_{1}-F$ consists of two disjoint edges e^{\prime} and $e^{\prime \prime}$ as is illustrated in this figure. These two edges enter into a perfect matching of $H_{1}-F$.

Before proving the main results, we remark at first that every polyomino graph is the union of some regular polyomino graphs sharing no common squares.

4 Proof of the main results

Proof of Theorem 2.1: For the necessity, let G be a k-resonant polyomino graph with $k \geq 4$. By Lemma 3.2, we need only consider the case when G is not regular. Let $H_{1} \cong P_{m} \times P_{n}$ be a maximal regular polyomino subgraph of G with $m, n \geq 3$.

Claim $1 m<5$ or $n<5$.
Suppose to the contrary that $m \geq 5$ and $n \geq 5$. Let h_{1}, h_{2}, h_{3} and h_{4} be the four vertex-disjoint squares in H_{1} as shown in Fig. 7. Then $G-h_{1}-h_{2}-h_{3}-h_{4}$ has an isolated vertex v, which contradicts the condition that G is k-resonant ($k \geq 4$). And so the claim follows.

Fig. 8 The illustration for the proof of Claim 2 of Theorem 2.1

Claim 2 If $H_{1} \cong P_{4} \times P_{n_{i}}$ for some $n_{i} \geq 5$, then the squares of G that are adjacent to H_{1} can only lie on the four possible positions a, b, c and d as is illustrated in B of Fig. 2.

Since H_{1} is a maximal regular polyomino subgraph of G, at least one of the squares s_{1}, s_{2}, s_{3} illustrated in a of Fig. 8 is not contained in G.

If $s_{2} \subseteq G$, assume as we may that $s_{1} \nsubseteq G$, then $s_{4} \subseteq G$ (refer to b of Fig. 8), since otherwise $G-s_{2}^{\prime}-s_{2}$ would contain an isolated vertex v_{1}. But then $G-s_{2}-s_{4}-s_{5}-s_{6}$ contains an isolated vertex v_{2}. Hence $s_{2} \nsubseteq G$.

We claim that none of squares $s_{2}, \ldots, s_{n_{i}-1}, s_{n_{i}+2}, \ldots, s_{2 n_{i}-1}$ illustrated in c of Fig. 8 belongs to G. If otherwise $s_{i} \subseteq G$, then the deletion of squares $s_{i}, s_{i}^{\prime}, s_{i}^{\prime \prime}, s_{i}^{\prime \prime \prime}$ from G would result in an isolated vertex v_{1}. If square $s_{1} \subset G$, then the deletion of squares s_{1}, s_{1}^{\prime}, and $s_{1}^{\prime \prime}$ from G results in an isolated vertex v_{2}. This contradiction shows that $s_{1} \nsubseteq G$. Similarly, $s_{2}, \ldots, s_{2 n_{i}} \nsubseteq G$. If $s \subseteq G$, then the deletion of squares s, h^{\prime} and $h^{\prime \prime}$ (the square containing " v_{2} ") results in an isolated vertex v_{3}. This contradiction shows that $s \nsubseteq G$. Similarly, $s^{\prime}, s^{\prime \prime}, s^{\prime \prime \prime} \nsubseteq G$. And so, Claim 2 follows.

Claim 3 If $H_{1} \cong P_{4} \times P_{4}$, then either $G \cong G_{0}$ or the possible squares adjacent to H_{1} are those illustrated in B or C of Fig. 2.

We shall show at first that none of the squares $g, g^{\prime}, g^{\prime \prime}$ and $g^{\prime \prime \prime}$ in Fig. 9 is contained in G. If $g \subseteq G$, by the maximality of H_{1}, at least one of s_{1} and s_{2}, say $s_{1} \nsubseteq G$. And so, $s_{3} \subseteq G$ since otherwise $G-g-s_{1}^{\prime}$ contains isolated vertex v_{1} as is illustrated in Fig. 9. But now $G-g-s_{3}-s_{3}^{\prime}-s_{3}^{\prime \prime}$ contains isolated vertex v_{2}. These contradictions show that $g \nsubseteq G$. Similarly, $g^{\prime}, g^{\prime \prime}, g^{\prime \prime \prime} \nsubseteq G$.

Next we shall consider that which of squares $s_{1}, s_{2}, \ldots, s_{11}$ and s_{12} illustrated in a of Fig. 10 are contained in G. Since G is not regular and 2-connected, at least one square of $s_{1}, s_{2}, \ldots, s_{8}$ belongs to G, say s_{1}.

Fig. 9 The illustration for the proof of Claim 3 of Theorem 2.1

Fig. 10 The illustration for the proof of Claim 3 of Theorem 2.1

Since every component of $G-s_{0}$ is even, if $s_{3} \subseteq G$ then the component of $G-s_{1}-s_{3}-s_{3}^{\prime}$ that contains vertex u has an odd number of vertices (refer to b of Fig. 10). This contradiction shows that $s_{3} \nsubseteq G$. If $s_{4} \subseteq G$, then the component of $G-s_{1}-s_{4}-s_{3}^{\prime}$ that contains vertex u is an odd component. This contradiction shows that $s_{4} \nsubseteq G$. Similarly, one can show that $s_{7} \nsubseteq G$.

If $s_{8} \nsubseteq G$, then $s_{9} \nsubseteq G$ since otherwise the deletion of squares s_{9} and h would result in an odd component containing v (refer to b of Fig. 10). Similarly, if $s_{2} \subseteq G$ then $s_{10} \nsubseteq G$; if $s_{5} \subseteq G$ then $s_{11} \nsubseteq G$; if $s_{6} \subseteq G$ then $s_{12} \nsubseteq G$. It follows from these discussions that if $s_{8} \nsubseteq G$, then G has the structure B of Fig. 2.

If $s_{8} \subseteq G$, then with similar method employed in the above two paragraphs one can show that $s_{2}, s_{5}, s_{6} \nsubseteq G$. Since G is 2-connected, it follows that $s_{10}, s_{11}, s_{12} \nsubseteq G$. Now, if $s_{9} \nsubseteq G$, then G has the structure C of Fig. 2. If $s_{9} \subseteq G$, then $s_{13} \subseteq G$ since otherwise $G-s_{9}-s_{9}^{\prime}$ has the isolated vertex v_{1} as is illustrated in a of Fig. 11. Similarly, $s_{14} \subseteq G$. And so, s_{15} or $s_{16} \subseteq G$ since otherwise v_{2} is an isolated vertex of $G-s_{13}-s_{14}$ as is illustrated in b of Fig. 11. Assume without loss of generality that $s_{15} \subseteq G$. Then $s_{16} \subseteq G$, since otherwise the component of $G-s_{9}-s_{9}^{\prime \prime}$ that contains vertices v_{3}, v_{4} and v_{5} has an odd number of vertices as illustrated in b of Fig. 11.

If $s_{17}, s_{18} \nsubseteq G$, then $G-s_{14}-s_{15}$ contains an isolated vertex v_{6} as illustrated in c of Fig. 11; if $s_{17} \subseteq G$ then $s_{1}, s_{8}, s_{9}, s_{13}, \ldots s_{17}, s_{17}^{\prime}$ form a subgraph $P_{4} \times P_{4}$ of G, with a similar method to that employed in the first paragraph of the proof of Claim 3 where we show $g \nsubseteq G$, we deduce that $s_{18} \nsubseteq G$; if $s_{18} \subseteq G$ and $s_{17} \nsubseteq G$, then

Fig. 11 The illustration for the proof of Claim 3 of Theorem 2.1
$G-s_{8}-s_{15}$ or $G-s_{17}^{\prime}-s_{16}$ contains odd components. These observations show that $s_{18} \nsubseteq G$ and $s_{17} \subseteq G$.

Now, we see that $s_{1}, s_{8}, s_{9}, s_{13}, \ldots s_{17}$ and s_{17}^{\prime} form a subgraph $H_{2} \cong P_{4} \times P_{4}$ of G (refer to d of Fig. 11). Replacing H_{1} by H_{2} and discussing once more, we deduce that $G \cong G_{0}$. Hence, Claim 3 follows.

Claim 4 If $H_{1} \cong P_{3} \times P_{m_{1}}$ with $m_{1} \geq 4$, then $m_{1}=4$ and H_{1} has the structure illustrated in B of Fig. 2.

Suppose to the contrary that $m_{1} \geq 5$. We shall show at first that none of the squares $s_{1}, s_{1}^{\prime}, s_{1}^{\prime \prime}$ and $s_{1}^{\prime \prime \prime}$ illustrated in a of Fig. 12 is contained in G. If $s_{1} \subseteq G$, by the maximality of H_{1} we deduce that $s_{1}^{\prime} \nsubseteq G$. And so, $s_{3} \subseteq G$ since otherwise v_{1} would be an isolated vertex of $G-s_{1}-s_{2}$ (refer to b of Fig. 12). If the square s_{4} illustrated in c of Fig. 12 is not contained in G, then the component of $G-s_{1}-s_{2}$ that contains v_{1}, v_{2}, v_{3} has an odd number of vertices. This contradiction shows that $s_{4} \subseteq G$. And so, either $s_{5} \subseteq G$ or $s_{6} \subseteq G$ since otherwise the vertex v_{4} illustrated in d of Fig. 12 would be either a cut vertex of G or an isolated vertex of $G-s_{3}-s_{3}^{\prime \prime}$. Combining this observation with Claim 3, we deduce that $s_{6} \subseteq G$ and $s_{5} \nsubseteq G$. Now, the square s_{7} illustrated in e of Fig. 12 is contained in G since otherwise the component of $G-s_{3}-s_{3}^{\prime \prime}$ that contains vertices v_{4}, v_{5} and v_{6} would have an odd number of vertices. Since $s_{1}^{\prime} \nsubseteq G$ and vertex v_{1} illustrated in f of Fig. 12 cannot be an isolated vertex of $G-s_{1}-s_{2}-s_{7}$,

Fig. 12 Illustration for the case of $H_{1} \cong P_{3} \times P_{m_{1}}\left(m_{1} \geq 4\right)$
it follows that $s_{8} \subseteq G$. Then $G-s_{8}-s_{9}-s_{3}^{\prime \prime}-s_{6}$ has an isolated vertex v_{7}. These contradictions show that $s_{1} \nsubseteq G$. Similarly, $s_{1}^{\prime}, s_{1}^{\prime \prime}, s_{1}^{\prime \prime \prime} \nsubseteq G$.

Let us label the squares of H_{1} as in a of Fig. 13. $h_{1}, h_{2}, \ldots, h_{m_{1}-1}$ and $h_{1}^{\prime}, h_{2}^{\prime}, \ldots, h_{m_{1}-1}^{\prime}$ are its possible adjacent squares. By Claim 3, we deduce that no three successive squares of $h_{1}, \ldots, h_{m_{1}-1}$ or $h_{1}^{\prime}, \ldots, h_{m_{1}-1}^{\prime}$ belong to G. Suppose that two successive squares of them, say h_{i} and h_{i+1}, belong to G. Since $m_{1} \geq 5$, either $s_{i-1} \subseteq H_{1}$ or $s_{i+2} \subseteq H_{1}$, say $s_{i-1} \subseteq H_{1}$. Then $s_{i-2} \subseteq G$ since otherwise v_{1} is an isolated vertex of $G-s_{i-1}^{\prime}-h_{i}$. Then either the component of $G-s_{i-1}-h_{i+1}$ containing v_{2} or the one of $G-s_{i-2}-s_{i}^{\prime}-h_{i+1}$ is odd, as in b of Fig. 13. This contradiction shows that no two successive squares of $h_{1}, h_{2}, \ldots h_{m_{1}-1}$ or $h_{1}^{\prime}, h_{2}^{\prime}, \ldots h_{m_{1}-1}^{\prime}$ belong to G. But now, as is illustrated in c of Fig. 13 the component of $G-S_{2}-S_{4}^{\prime}$ that contains $u_{1}, u_{2}, \ldots u_{5}$ has an odd number of vertices. This contradiction shows that $m_{1} \leq 4$. Therefore $m_{1}=4$.

A similar argument shows that none of the squares $s_{1}, s_{1}^{\prime}, s_{1}^{\prime \prime}$ and $s_{1}^{\prime \prime \prime}$ illustrated in a of Fig. 14 belong to G when $H_{1}=P_{3} \times P_{4}$. Other possible adjacent squares of H_{1} are labelled in b of Fig. 14. Since H_{1} is a maximal regular grid graph in G, at least one of s_{1}, s_{2} and s_{3} is not contained in G. If $s_{2} \subseteq G$, assume without loss of generality that

h_{1}	h_{2}			$h_{m_{1}-1}$
s_{1}	s_{2}		\cdots	$s_{m_{1}-1}$
s_{1}^{\prime}	s_{2}^{\prime}		\cdots	$s_{m_{1-1}}^{\prime}$
h_{1}^{\prime}	h_{2}^{\prime}			$h_{m_{1}-1}^{\prime}$

(a)

(b)

(c)

Fig. 13 Illustration for the case of $H_{1} \cong P_{3} \times P_{m_{1}}\left(m_{1} \geq 4\right)$

Fig. 14 Illustration for the case of $H_{1} \cong P_{3} \times P_{4}$

(a)

s_{7}			
		s_{9}	
s_{1}			s_{4}
s_{2}			s_{5}
s_{3}			s_{6}
s_{8}		s_{10}	

(b)

(d)
$s_{3} \nsubseteq G$, then the vertex v illustrated in c of Fig. 14 is an isolated vertex of $G-s_{2}-h_{1}$. This contradiction shows that $s_{2} \nsubseteq G$. Similarly, $s_{5} \nsubseteq G$.

If $s_{7} \subseteq G$, then $s_{1} \subseteq G$ since otherwise G would contain a cut vertex. But now, as is illustrated in d of Fig. 14, the component of $G-s_{7}-h_{3}$ that contains the vertex
v^{\prime} has an odd number of vertices. This contradiction shows that $s_{7} \nsubseteq G$. Similarly, $s_{8}, s_{9}, s_{10} \nsubseteq G$. Claim 4 follows.

The above four claims and Lemma 3.1 show that every 4-resonant polyomino graph G is either the graph G_{0} or the union of some $P_{4} \times P_{m_{1}}, P_{4} \times P_{m_{2}}, \ldots, P_{4} \times$ $P_{m_{i}}\left(m_{1}, m_{2}, \ldots, m_{i} \geq 3\right.$) together with some 4-resonant catacondensed polyomino graphs which connecting them, and the connecting positions satisfy the structures of (B) and (C) for any $P_{4} \times P_{m_{j}}$. And so, the necessity follows.

We continue to prove sufficiency. For any maximal regular polyomino subgraph $P_{4} \times P_{m_{i}}$ with $m_{i} \geq 3$, if its adjacent squares satisfy the structure (B) then it is called a B-type subgraph of G; if its adjacent squares satisfy the structure (C) then it is called a C-type subgraph of G.

Case 1. $\quad G \not \nexists G_{0}$.

Let $P_{4} \times P_{m_{1}}, \ldots, P_{4} \times P_{m_{n}}$ be all the maximal regular polyomino subgraphs of G with $m_{1}, \ldots, m_{n} \geq 3$. If $n=0$, by Lemma 3.1, G is k-resonant for any $k \geq 4$.

If $n=1$, consider at first the case when $P_{4} \times P_{m_{1}}$ is a B-type subgraph, referring to B of Fig. 2. a, b, c, d are the four possible adjacent squares of $P_{4} \times P_{m_{1}}$. To show that G is k-resonant $(k \geq 4)$ in this case, we use induction on m_{1}. Let F be an arbitrary set of disjoint squares of G. If $m_{1}=2, G$ is catacondensed and by Lemma 3.1 it is k-resonant $(k \geq 4)$. Suppose that G is k-resonant ($k \geq 4$) for smaller integers. Consider large integer m_{1}. Delete F firstly. If some of the four a, b, c, d belong to G but not to F, then delete the two edges of the square that connect $P_{4} \times P_{m_{1}}$ and the outside. We conclude by Lemmas 3.1, 3.2 and the induction hypothesis that the resultant graph has perfect matchings. And so, G is k-resonant in this case.

Consider secondly that $P_{4} \times P_{m_{1}}$ is a C-type subgraph of G, which implies that $m_{1}=4$. When we delete k vertex-disjoint squares from G, at least one square of e and f is not deleted, say e. Since the deletion of the two edges of e that connect $P_{4} \times P_{4}$ and another polyomino subgraph results in a catacondensed polyomino subgraph and another subgraph with a B-type $P_{4} \times P_{4}$. By Lemma 3.1 and the observation obtained in the previous paragraph, we deduce that G is k-resonant.

If $n \geq 2$, as is observed in the case when $n=1$, the deletion of any k vertex-disjoint squares and the edges in squares a, b, c, d that connect $P_{4} \times P_{m_{1}}$ and other polyomino subgraphs results in a graph G^{\prime} with every component being either an isolated edge, or a k-resonant ($k \geq 4$) catacondensed polyomino graph, or a polyomino graph with less maximal regular polyomino subgraphs of the form $P_{4} \times P_{m_{i}}$ with $m_{i} \geq 3$. By induction on n, G^{\prime} has a perfect matching. And so, G is k-resonant in case 1 .

Case 2. $G \cong G_{0}$.
As is illustrated in Fig. 15, let G_{1} and G_{2} be the two subgraphs isomorphic to $P_{4} \times P_{4}$ and F be the set of any k vertex-disjoint squares of G.

Subcase 1. Squares $a, b, c, e, f, g \nsubseteq F$. By Lemma 3.2, $G_{i}-d-F$ has perfect matchings, where $i=1,2$. And so, $G-F$ has perfect matchings.

Subcase 2. At least one of the squares a, c, e and g belongs to F. By symmetry, we may assume without loss of generality that $a \subseteq F$. Then $c, d, g \nsubseteq F$. As is shown in

Fig. 15 Illustration for case 2

Fig. 16 A 3-resonant but not 4-resonant polyomino graph G

case 1, both $G_{1} \cup e-F-e$ and $G_{2} \cup a-F-a$ have perfect matchings. And so, $G-F$ has perfect matchings in this case.

Subcase 3. Squares $a, c, d, e, g \nsubseteq F$ but $b \subseteq F$ or $f \subseteq F$. By symmetry, assume without loss of generality that $b \subseteq F$. If $f \subseteq F$, then $F=\{b, f\}$ and $G-F$ has perfect matchings since it is an even cycle in this case; if $f \nsubseteq F$, since both $G_{1}-F$ and $G_{2}-d-F$ have perfect matchings, $G-F$ also has perfect matchings in this case. And so, sufficiency follows.

Proof of Theorem 2.3: The graph G illustrated in Fig. 16 is not 4-resonant since the deletion of the four squares containing black points separates an isolated vertex $\{v\}$ from G. By Corollary 2.1, it suffices to show that G is 3-resonant.

Let us delete two arbitrary vertex-disjoint squares C_{1} and C_{2} from a regular polyomino graph $H=P_{2 m} \times P_{2 n}$. If these two cycles lie in a same subgraph Q with form $P_{2} \times P_{2 n}$ or $P_{2 m} \times P_{2}$, then both $G-Q$ and $Q-C_{1}-C_{2}$ have perfect matchings; if otherwise, then $C_{1} \subset Q_{1}$ and $C_{2} \subset Q_{2}$, where Q_{1} and Q_{2} are two vertex disjoint subgraphs both having form $P_{2} \times P_{2 m}$ or both having the form $P_{2 n} \times P_{2}$. Clearly, $G-Q_{1}-Q_{2}, Q_{1}-C_{1}$ and $Q_{2}-C_{2}$ each contains perfect matchings. And so, we have the following Proposition 4.1.

Proposition 4.1 For any integers $m, n \geq 1$, the polyomino graph $P_{2 m} \times P_{2 n}$ is 2-resonant.

Lemma 4.2 [36] Let G be a plane bipartite graph with more than two vertices. Then G is 1 -resonant if and only if G is elementary.

Lemma 4.3 [36] Assume that a 2-connected plane bipartite graph G is weakly elementary. Then G is elementary if and only if the exterior face of G is resonant, i.e., G has a perfect matching M such that the edges of the outer boundary are alternatively in and out of M.

Lemma 4.4 [36] Let G be a connected plane bipartite graph that has a perfect matching. If the interior vertices of G (not lying on the boundary of the infinite face of G) all have the same degree then G is weakly elementary.

By the above three lemmas from Theorems 2.4, 2.10 and 2.11 of [36], we have:
Proposition 4.5 If the exterior face of a 2 -connected polyomino graph G with at least one perfect matching is resonant, then G is 1-resonant.

As is illustrated in (a) of Fig. 17, let $L_{1}=P_{10} \times P_{6}, L_{2}=P_{6} \times P_{10}$ be two subgraphs of G and $L=L_{1} \cap L_{2} \cong P_{6} \times P_{6}$. For any three vertex-disjoint squares of G, we shall illustrate that $G-s_{1}-s_{2}-s_{3}$ has a perfect matching. The illustrations are depicted in Fig. 17, they have the same labeling as the corresponding distinct cases. These illustrations divide $G-s_{1}-s_{2}-s_{3}$ into several vertex-disjoint subgraphs bounded by the bold lines. By Propositions 4.1, 4.2 and Lemmas 3.1, 3.2, these bounded subgraphs have perfect matchings respectively. And so, G is 3-resonant. By the symmetry of L_{1} and L_{2}, the distinct cases can listed as follows.
(a) Squares s_{1}, s_{2}, s_{3} and graph L are vertex-disjoint.
(b) Exactly one of s_{1}, s_{2} and s_{3} intersects L, say s_{1}.
$\left(b_{1}\right) s_{1} \subseteq L$.
$\left(b_{2}\right) s_{1} \nsubseteq L$.
(c) Exactly two of s_{1}, s_{2} and s_{3} intersect L, say s_{1} and s_{2}.
$\left(c_{1}\right) s_{1}, s_{2} \subseteq L$.
(c2) $s_{1} \nsubseteq L$ but $s_{2} \subseteq L$.
$\left(c_{2_{1}}\right) s_{1}, s_{2}, s_{3} \subseteq L_{1}$ lie in three adjacent rows.
$\left(c_{2}\right) s_{1}, s_{2}, s_{3} \subseteq L_{1}$, and s_{1}, s_{3} lie in two adjacent rows of L_{1} but s_{2} does not lie in the adjacent row with either of them, $\left(c_{23}\right) s_{1}, s_{2}, s_{3} \subseteq L_{1}$ and only s_{1}, s_{2} lie in two adjacent rows of L_{1}.
$\left(c_{24}\right) s_{1}, s_{2}, s_{3} \subseteq L_{1}$ do not lie in the adjacent rows (may be in the same row).
$\left(c_{2_{5}}\right) s_{1}, s_{2} \subseteq L_{1}$ but $s_{3} \subseteq L_{2}$. The division is the same as that of case c_{1}.
($\left.c_{3}\right) s_{1}, s_{2}$ are both adjacent to L, i.e., $s_{1}, s_{2} \nsubseteq L$.
$\left(c_{3_{1}}\right) s_{1}, s_{2} \subseteq L_{1}$ but $s_{3} \subseteq L_{2}$.
$\left(c_{3_{2}}\right) s_{1}, s_{2}, s_{3} \subseteq L_{1}$.
$\left(c_{3_{3}}\right) s_{1}, s_{3} \subseteq L_{1}, s_{2} \subseteq L_{2}$ and s_{1}, s_{2} lie in the adjacent columns.
$\left(c_{3_{4}}\right) s_{1}, s_{3} \subseteq L_{1}, s_{2} \subseteq L_{2}$ and s_{1}, s_{2} do not lie in two adjacent columns but s_{2}, s_{3} do.
$\left(c_{3_{5}}\right) s_{1}, s_{3} \subseteq L_{1}, s_{2} \subseteq L_{2}, s_{2}$ does not lie in the adjacent columns with s_{1} or s_{3} but s_{1} and s_{3} lie in two adjacent columns.

Fig. 17 Illustration for the proof of 3-resonance of G^{\prime}
$\left(c_{3_{6}}\right) s_{1}, s_{3} \subseteq L_{1}, s_{2} \subseteq L_{2}$, no two of s_{1}, s_{2} and s_{3} lie in the adjacent columns.
(d) s_{1}, s_{2}, s_{3} all intersect L.
$\left(d_{1}\right) s_{1}, s_{2}, s_{3} \subseteq L_{1}$ lie in three consequent rows of L_{1}. The division is similar to case $c_{2_{1}}$.
$\left(d_{2}\right) s_{1}, s_{2}, s_{3} \subseteq L_{1}$ lie either in the same rows or in disjoint rows. The division is similar to case $c_{2_{4}}$.
$\left(d_{3}\right) s_{1}, s_{2}, s_{3} \subseteq L_{1}$, exactly two of them lie in adjacent rows. The division is similar to case $c_{3_{2}}$.
$\left(d_{4}\right) s_{1}, s_{2} \subseteq L_{1}, s_{3} \subseteq L_{2}$ and $s_{2}, s_{3} \nsubseteq L$. In this case, these three squares can not lie in the consequent three rows or columns. Assume without loss of generality that they are not in three consequent columns. If no two lie in adjacent columns, then the division is similar to case c_{36}.
(d_{5}) $s_{1}, s_{2} \subseteq L_{1}, s_{3} \subseteq L_{2}$ and $s_{2}, s_{3} \nsubseteq L$. If exactly two of them, say s_{1} and s_{2}, lie in adjacent columns. The division is similar to case c_{35}. Otherwise, s_{1} or s_{2} lies in the adjacent column with s_{3}, then the division is illustrated by d_{5} in Fig. 17.

Acknowledgments We are grateful to Professor D.J. Klein for the valuable suggestions and a wealth of information on the background of resonance provided to improve this manuscript.

References

1. C. Berge, C.C. Chen, V. Chvatal, C.S. Seow, Combinatorial properties of polyominoes. Combinatorics 1, 217-224 (1981)
2. J.A. Bandy, U, S, R Murty, Graph theory (Spring, New York, 2008)
3. E.J. Cockayne, Chessboard domination problems. Discrete Math. 86, 13-20 (1990)
4. R. Chen, Perfect matchings of generalized polyomino graphs. Graphs. Comb. 21, 515-529 (2005)
5. R. Chen, X. Guo, k-coverable coronoid systems. J. Math. Chem. 12, 147-162 (1993)
6. E. Clar, The Aromatic Sextet (Wiley, London, 1972)
7. X. Guo, k-Resonace in benzenoid systems, open-ended carbon nanotubes, toroidal polyhexes; and k-cycle resonant graphs. MATCH Commun. Math. Comput. Chem. 56, 439-456 (2006)
8. F. Harary, P.G. Mezey, Cell-shedding transformations, equivalence relations, and similarity measures for square-cell configurations. Int. Quant. Chem. 62, 353-361 (1997)
9. W.C. Herndon, Thermochemical parameters for benzenoid hydrocarbons. Thermochim. Acta. 8, 225237 (1974)
10. W.C. Herndon, Resonance energies of aromatic hydrocarbons: A quantitative test of resonance theory. J. Am. Chem. Soc. 95, 2404-2406 (1973)
11. P. John, H. Sachs, H. Zerntic, Counting perfectmatchings in polyominoes with applications to the dimer problem. Zastosowania Matemetyki (Appl. Math) 19, 465-477 (1987)
12. S.A. Kivelson, Statistics of holons in the quantum hard-core dimer gas. Phys. Rev. B 39, 259-264 (1989)
13. D.J. Klein, Aromaticity via Kekulé structures and conjugated circuits. J. Chem. Educ. 69, 691694 (1992)
14. D.J. Klein, Elemental benzenoids. J. Chem. Inf. Comput. Sci. 34, 453-459 (1994)
15. D.J. Klein, T.G. Schmalz, Exact Enumeration of Long-Range-Ordered Dimer Coverings of the SquarePlanar Lattice. Phys. Rev. B 41, 2244-2248 (1990)
16. D.J. Klein, H. Zhu, Resonance in elemental benzenoids. Discrete Appl. Math. 67, 157-173 (1996)
17. Q. Li, S. Liu, H. Zhang, 2-extendability and k-resonance of non-bipartite Klein-bottle polyhexes. Discrete Appl. Math. 159, 800-811 (2011)
18. S. Liu, H. Zhang, Maximally resonant polygonal systems. Discrete Math. 310, 2790-2800 (2010)
19. L. Lovasz, M.D. Plummer, Matching Theory, Annals of Discrete Math. Vol. 29 (North-Holland, Amsterdam, 1986)
20. A. Motoyama, H. Hosoya, King and domino polyominals for polyomino graphs. J. Math. Phys. 18, 1485-1490 (1997)
21. M. Randić, Conjugated circuits and resonance energies of benzenoid hydrocarbons. Chem. Phys. Lett. 38, 68-70 (1976)
22. M. Randić, Graph theoretical approach to local and overall aromaticity of benzenoid hydrocarbons. Tetrahedron 31(11-12), 1477-1481 (1975)
23. M. Randić, Aromaticity and conjugation. J. Amer. Chem. Soc. 99, 444-450 (1977)
24. M. Randić, Conjugated circuits and resonance energies of benzenoid hydrocarbons. Chem. Phys. Lett. 38, 68-70 (1976)
25. M. Randić, Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103(9), 3449-3605 (2003)
26. H. Sachs, Counting perfect matchings in lattice graphs, Topics in combinatorics and graph theory (Phy-sica-Verlag, Heidelberg, 1990), pp. 577-584
27. W.C. Shiu, P.C.B. Lam, H. Zhang, k-resonance in toroidal polyhexes. J. Math. Chem. 38(4), 451466 (2005)
28. W.C. Shiu, H. Zhang, A complete characterization for k-resonant Klein-bottle polyhexes. J. Math. Chem. 43, 45-59 (2008)
29. W.C. Shiu, H. Zhang, S. Liu, Maximal resonance of cubic bipartite polyhedral graphs. J. Math. Chem. 48, 676-686 (2010)
30. W.T. Simpson, On the use of structures as an aid in understanding π-electron spectra. J. Am. Chem. Soc. 75, 597-603 (1953)
31. D. Ye, Z. Qi, H. Zhang, On k-resonant fullerene graphs. SIAM J. Discrete Math. 23(2), 10231044 (2009)
32. F. Zhang, L. Wang, k-Resonance of open-ended carbon nanotubes. J. Math. Chem. 35(2), 87-103 (2004)
33. H. Zhang, S. Liu, 2-resonance of plane bipartite graphs and its applications to boron-nitrogen fullerenes. Discrete Appl. Math. 158, 1559-1569 (2010)
34. H. Zhang, D. Ye, k-resonant toroidal polyhexes. J. Math. Chem. 44(1), 270-285 (2008)
35. H. Zhang, F. Zhang, Perfect matchings of polyomino graphs. Graphs Comb. 13, 295-304 (1997)
36. H. Zhang, F. Zhang, Plane elementary bipartite graphs. Discrete Appl. Math. 105, 291-311 (2000)
37. M. Zheng, k-Resonant benzenoid systems. J. Mol. Struct. (Theochem) 231, 321-334 (1991)

[^0]: Supported by NNSF of China (Grant no. 11126326;10801091;11201404) and NSF of Guangdong Province (s20120100815).
 S. Liu (\triangle) • J. Ou

 Department of Mathematics, Wuyi University, Jiangmen 529020, People's Republic of China e-mail: 1sh1808@163.com
 J. Ou
 e-mail: oujp@263.net

