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Abstract A polyomino graph is a finite plane 2-connected bipartite graph every
interior face of which is bounded by a regular square of side length one. Let k be
a positive integer, a polyomino graph G is k-resonant if the deletion of any i ≤ k
vertex-disjoint squares from G results in a graph either having perfect matchings or
being empty. If graph G is k-resonant for any integer k ≥ 1, then it is called maximally
resonant. All maximally resonant polyomino graphs are characterized in this work.
As a result, the least integer k such that a k-resonant polyomino graph is maximally
resonant is determined.

Keywords Polyomino graph · k-resonance · Maximal resonance

1 Introduction

The concept of resonance originates from the conjugated circuits method which was
early found in [30] and [9,10]. Conjugated circuits were also found in Clar’s aro-
matic sextet theory [6] and Randić’s conjugated circuit model [21–25]. Klein [13]
emphasized the connection of Clar’s ideas with the conjugated circuits method. In
mathematics [19], a conjugated circuit is named an alternating cycle. A matching
(resp. perfect matching) of a graph is a set of its edges such that every vertex of the
graph is incident with at most (resp. exactly) one edge in this set. For a graph G with
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a matching M , an M-alternating cycle is a cycle of which the edges appear alternately
in and out of M .

This work studies the maximal resonance of polyomino graphs [1], also called
square-cell configurations [8] or chess-boards [3], which are finite plane connected
bipartite graphs with every interior face being bounded by a regular square of side
length one. Let k be a positive integer, a polyomino graph G is k-resonant if delete any
i ≤ k vertex-disjoint squares from G, i.e., delete the edges and vertices of the squares
together with all the edges incident with some of the deleted vertices, the remained
graph has a perfect matching or is empty. In other words, G is k-resonant if for any
i ≤ k vertex-disjoint squares, there is a perfect matching M such that these i squares
are all M-alternating cycles. A polyomino graph is called maximally resonant if it is
k-resonant for any integer k ≥ 1. Clearly, polyomino graphs containing cut-vertices
are not 1-resonant. And so, all polyomino graphs are assumed 2-connected in what
follows.

Polyomino graphs have useful applications in statistical physics and in modeling
problems of surface chemistry (please refer to ref. [8] and the references therein).
They are also modelings of many interesting combinatorial subjects, such as hyper-
graphs [1], domination problem [3], rook polynomials [20], etc. In fact, problems
based on perfect matchings was extensively studied on fragments of the square-planar
net [4,11,15,26,35]. Also, Kivelson developed the conjugated circuits method for the
polyomino graphs [12].

On the other hand, k-resonance of molecular graphs have been investigated exten-
sively [7,14,16,17,27,28,31–33,37], but the 2-resonance for benzenoid systems,
open-ended nanotubes and carbon fullerenes remains unknown. For advances on max-
imal resonance of graphs, it is known that if a benzenoid system is 3-resonant then
it is maximally resonant [37]. This conclusion is also true for coronoid systems [5],
open-end nanotubes [32], toroidal polyhexes [27,34], Klein-bottle polyhexes [28] and
fullerene graphs [31], B-N fullerene graphs [33], generalized benzenoid systems and
generalized B-N fullerene graphs [18,29].

For a class of graphs, if n is the least integer such that every n-resonant graph in the
class is maximally resonant, then to completely characterize the k-resonance of these
graphs, it suffices to characterize the k-resonance for every integer k ≤ n. And so, it
is important to determine this least integer n. For 2-connected polyomino graphs, by
characterizing all these maximally resonant graphs it is shown in this work that this
integer n = 4. We shall present the main results of this work in Sect. 2, their proofs are
presented in the last section. As preliminaries, the k-resonance of polyomino graphs
Pm × Pn (m, n ≥ 2) are presented in Sect. 3.

Before proceeding, we need to introduce some more symbols and terminologies.
Let G be a graph with vertex set V (G) and edge set E(G). A graph G ′ is a subgraph
of G, denoted by G ′ ⊆ G, if V (G ′) ⊆ V (G) and E(G ′) ⊆ E(G). |V (G)| denotes
the number of vertices of G. A catacondensed polyomino graph is a polyomino graph
every vertex of which lies on the boundary of the outer face. For other symbols and
terminologies not specified herein, we follow that of [2].
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2 Main results

Before presenting the main results, we introduce some special classes of graphs. The
Cartesian product Pm × Pn of paths Pm and Pn is called a regular polyomino graph,
where (m, n ≥ 2). For clarity, regular polyomino graph P4 × P5 is shown in Fig. 1.
Particularly, if {m, n} ∩ {2} �= ∅, we call the regular polyomino graph a ladder graph.

Another special graph G0 and two possible fragments of graphs are depicted in
Fig. 2. With these terminologies we can now list our main results as follows.

Theorem 2.1 For any given integer k ≥ 4, a polyomino graph G is k-resonant if and
only if either G ∼= G0, or each maximal regular polyomino subgraph Pm × Pn has
{m, n}∩ {2, 4} �= ∅ such that the adjacent squares of a P4 × Pn (n ≥ 3) can only exist
on the positions illustrated in B or C of Fig. 2 and any pair of P2 × Pn1 and P2 × Pn2

are either disjoint or share exactly one square.

As a direct consequence of Theorem 2.1, we have the following corollary.

Corollary 2.2 A polyomino graph is maximally resonant if and only if it is 4-resonant.

Fig. 1 A regular polyomino
graph P4 × P5
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Fig. 2 a , G0. a, b, c, d and e, f are the possible adjacent squares of P4 × Pn (n ≥ 3) and P4 × P4 in (b)
and (c), respectively
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Theorem 2.3 The least positive integer k such that every polyomino graph is maxi-
mally resonant if and only if it is k-resonant is 4.

3 Preliminary

For any positive integer k ≥ 1, a k-resonant polyomino graph contains perfect match-
ings. And so, it has an even number of vertices.

Lemma 3.1 A 2-connected catacondensed polyomino graph G is maximally resonant
if and only if any pair of its maximal ladder graphs are either disjoint or share exactly
one square.

Proof Necessity: Suppose that two different maximal ladder graphs L1 and L2 of G
are neither disjoint nor share one square. Since G is catacondensed and 2-connected,
L1 ∩ L2 is an edge, say e. Refer to Fig. 3a where the squares are labeled. Let H1 be
the component of G − a1 − b1 that contains v and H2 the union of components of
G − b that are subgraphs of H1. Then | V (H2) |=| V (H1) | −1. Hence, at least one
of H1 and the components of H2 is odd. Then G is not maximally resonant.

Sufficiency: We use induction on the number of squares of G. It is not difficult to
see that it holds for the trivial case when G is a single square. Suppose G contains
more than one square. Let F �= ∅ be an arbitrary set of vertex-disjoint squares of
G and f ∈ F . Since G does not contain the structure of Fig. 3a, we distinguish the
following three cases.

Case 1. f belongs to exactly one maximal ladder graph in G and is disjoint to
any other one. Then G − f consists of smaller catacondensed polyomino graphs and
independent edges. By the induction hypothesis, G − F has perfect matchings.

Case 2. f belongs to two maximal ladder graphs of G. Similar to case 1, G − F has
perfect matchings.

Case 3. f belongs to one maximal ladder graph L but is adjacent to other ones, say
possibly L1 and L2 as illustrated in Fig. 3b. Then {a1, a2, a3, a4} ∩ F = ∅. Then the

Fig. 3 Illustration for the proof
of Lemma 3.1
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Fig. 4 a P3 × Pn (n > 4);
bPm × Pn (m, n > 4)
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Fig. 5 P4 × Pn (n ≥ 3) and one of its perfect matchings M

remained graph by cutting edges e1, e2, e3, e4 in G − F consists of smaller catacon-
densed polyomino graphs and independent edges. By the induction hypothesis, G − F
has perfect matchings.

Since F is arbitrarily chosen, G is maximally resonant. ��
In fact, the structure in Fig. 3a is forbidden in all maximally resonant polyomino

graphs.
For the maximal resonance of regular polyomino graphs Pm × Pn (m, n ≥ 2), we

have the follow conclusion.

Lemma 3.2 Pm × Pn (m, n ≥ 2) is maximally resonant if and only if {m, n} ∩
{2, 4} �= ∅.

Proof Necessity: Suppose on the contrary that {m, n} ∩ {2, 4} = ∅. If m = 3, since
P3 × Pn is maximally resonant, it has an even number of vertices. Hence n (> 4) is
even. Let h1 and h2 be the two squares illustrated in Fig. 4a. Then P3 × Pn − h1 − h2
consists of two odd components, which contradicts the maximal resonance of Pm × Pn .
Symmetrically, n �= 3.

If m, n ≥ 5, let h1, h2 and h3 be the three squares illustrated in Fig. 4b, then
Pm × Pn − h1 − h2 − h3 contains a component of five vertices. The necessity follows
from this contradiction.

Sufficiency: By Lemma 3.1, it suffices to consider the case when m = 4 and n ≥ 3.
Let us label the squares of P4 × Pn with three distinct rows and n − 1 columns as in
Fig. 5, where a perfect matching M is also illustrated by the double edges.
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Fig. 6 H1 − F has a perfect
matching {e′, e′′}, where the
squares inserted cycles belong
to F

'e 'e
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Fig. 7 v is an isolated vertex
when delete the four squares
inserted cycles

v
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Let F be any set of vertex-disjoint squares of P4 × Pn, H be the subgraph of
P4 × Pn induced by all the columns containing at least one square of F and write
H ′=P4 × Pn − H . Clearly, every component of H or H ′ is isomorphic to P4 × Pni

for some ni ≥ 1. Firstly, M0 = M ∩ E(H ′) is a perfect matching of H ′ whenever H ′
is not empty. Secondly, we shall show in what follows that for any component H1 of
H , either H1 − F is empty or it also has perfect matchings and so the lemma follows.

If H1 consists of one column, then H1 − F is empty or has a perfect matching.
Now consider the case when H1 consists of at least two columns. It is not difficult to
see that each column of H1 contains a unique square of F and that all these squares
must lie in row r1 and row r3 alternatively as in Fig. 6. No matter whether H1 has an
odd or even number of columns, H1 − F consists of two disjoint edges e′ and e′′ as is
illustrated in this figure. These two edges enter into a perfect matching of H1 − F . ��

Before proving the main results, we remark at first that every polyomino graph is
the union of some regular polyomino graphs sharing no common squares.

4 Proof of the main results

Proof of Theorem 2.1: For the necessity, let G be a k-resonant polyomino graph with
k ≥ 4. By Lemma 3.2, we need only consider the case when G is not regular. Let
H1 ∼= Pm × Pn be a maximal regular polyomino subgraph of G with m, n ≥ 3.

Claim 1 m < 5 or n < 5.
Suppose to the contrary that m ≥ 5 and n ≥ 5. Let h1, h2, h3 and h4 be the four

vertex-disjoint squares in H1 as shown in Fig. 7. Then G − h1 − h2 − h3 − h4 has an
isolated vertex v, which contradicts the condition that G is k-resonant (k ≥ 4). And
so the claim follows.
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Fig. 8 The illustration for the proof of Claim 2 of Theorem 2.1

Claim 2 If H1 ∼= P4 × Pni for some ni ≥ 5, then the squares of G that are adjacent
to H1 can only lie on the four possible positions a, b, c and d as is illustrated in B of
Fig. 2.

Since H1 is a maximal regular polyomino subgraph of G, at least one of the squares
s1, s2, s3 illustrated in a of Fig. 8 is not contained in G.

If s2 ⊆ G, assume as we may that s1 � G, then s4 ⊆ G (refer to b of Fig. 8), since
otherwise G−s′

2−s2 would contain an isolated vertex v1. But then G−s2−s4−s5−s6
contains an isolated vertex v2. Hence s2 � G.

We claim that none of squares s2, . . . , sni −1, sni +2, . . . , s2ni −1 illustrated in c of
Fig. 8 belongs to G. If otherwise si ⊆ G, then the deletion of squares si , s′

i , s′′
i , s′′′

i
from G would result in an isolated vertex v1. If square s1 ⊂ G, then the deletion of
squares s1, s′

1, and s′′
1 from G results in an isolated vertex v2. This contradiction shows

that s1 � G. Similarly, s2, . . . , s2ni � G. If s ⊆ G, then the deletion of squares s,
h′ and h′′ (the square containing “v2”) results in an isolated vertex v3. This contradic-
tion shows that s � G. Similarly, s′, s′′, s′′′ � G. And so, Claim 2 follows.

Claim 3 If H1 ∼= P4 × P4, then either G ∼= G0 or the possible squares adjacent to
H1 are those illustrated in B or C of Fig. 2.

We shall show at first that none of the squares g, g′, g′′ and g′′′ in Fig. 9 is contained
in G. If g ⊆ G, by the maximality of H1, at least one of s1 and s2, say s1 � G. And
so, s3 ⊆ G since otherwise G − g − s′

1 contains isolated vertex v1 as is illustrated in
Fig. 9. But now G − g − s3 − s′

3 − s′′
3 contains isolated vertex v2. These contradictions

show that g � G. Similarly, g′, g′′, g′′′ � G.
Next we shall consider that which of squares s1, s2, . . . , s11 and s12 illustrated in

a of Fig. 10 are contained in G. Since G is not regular and 2-connected, at least one
square of s1, s2, . . . , s8 belongs to G, say s1.
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Fig. 9 The illustration for the
proof of Claim 3 of Theorem 2.1
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Fig. 10 The illustration for the proof of Claim 3 of Theorem 2.1

Since every component of G − s0 is even, if s3 ⊆ G then the component of
G − s1 − s3 − s′

3 that contains vertex u has an odd number of vertices (refer to b
of Fig. 10). This contradiction shows that s3 � G. If s4 ⊆ G, then the component
of G − s1 − s4 − s′

3 that contains vertex u is an odd component. This contradiction
shows that s4 � G. Similarly, one can show that s7 � G.

If s8 � G, then s9 � G since otherwise the deletion of squares s9 and h would
result in an odd component containing v (refer to b of Fig. 10). Similarly, if s2 ⊆ G
then s10 � G; if s5 ⊆ G then s11 � G; if s6 ⊆ G then s12 � G. It follows from these
discussions that if s8 � G, then G has the structure B of Fig. 2.

If s8 ⊆ G, then with similar method employed in the above two paragraphs one
can show that s2, s5, s6 � G. Since G is 2-connected, it follows that s10, s11, s12 � G.
Now, if s9 � G, then G has the structure C of Fig. 2. If s9 ⊆ G, then s13 ⊆ G
since otherwise G − s9 − s′

9 has the isolated vertex v1 as is illustrated in a of Fig. 11.
Similarly, s14 ⊆ G. And so, s15 or s16 ⊆ G since otherwise v2 is an isolated vertex of
G − s13 − s14 as is illustrated in b of Fig. 11. Assume without loss of generality that
s15 ⊆ G. Then s16 ⊆ G, since otherwise the component of G − s9 − s′′

9 that contains
vertices v3, v4 and v5 has an odd number of vertices as illustrated in b of Fig. 11.

If s17, s18 � G, then G − s14 − s15 contains an isolated vertex v6 as illustrated in c
of Fig. 11; if s17 ⊆ G then s1, s8, s9, s13, . . . s17, s′

17 form a subgraph P4 × P4 of G,
with a similar method to that employed in the first paragraph of the proof of Claim
3 where we show g � G, we deduce that s18 � G; if s18 ⊆ G and s17 � G, then
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Fig. 11 The illustration for the proof of Claim 3 of Theorem 2.1

G − s8 − s15 or G − s′
17 − s16 contains odd components. These observations show

that s18 � G and s17 ⊆ G.
Now, we see that s1, s8, s9, s13, . . . s17 and s′

17 form a subgraph H2 ∼= P4 × P4 of
G (refer to d of Fig. 11). Replacing H1 by H2 and discussing once more, we deduce
that G ∼= G0. Hence, Claim 3 follows.

Claim 4 If H1 ∼= P3 × Pm1 with m1 ≥ 4, then m1 = 4 and H1 has the structure
illustrated in B of Fig. 2.

Suppose to the contrary that m1 ≥ 5. We shall show at first that none of the squares
s1, s′

1, s′′
1 and s′′′

1 illustrated in a of Fig. 12 is contained in G. If s1 ⊆ G, by the maxi-
mality of H1 we deduce that s′

1 � G. And so, s3 ⊆ G since otherwise v1 would be an
isolated vertex of G − s1 − s2 (refer to b of Fig. 12). If the square s4 illustrated in c of
Fig. 12 is not contained in G, then the component of G−s1−s2 that contains v1, v2, v3
has an odd number of vertices. This contradiction shows that s4 ⊆ G. And so, either
s5 ⊆ G or s6 ⊆ G since otherwise the vertex v4 illustrated in d of Fig. 12 would be
either a cut vertex of G or an isolated vertex of G−s3−s′′

3 . Combining this observation
with Claim 3, we deduce that s6 ⊆ G and s5 � G. Now, the square s7 illustrated in
e of Fig. 12 is contained in G since otherwise the component of G − s3 − s′′

3 that
contains vertices v4, v5 and v6 would have an odd number of vertices. Since s′

1 � G
and vertex v1 illustrated in f of Fig. 12 cannot be an isolated vertex of G − s1 − s2 − s7,
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Fig. 12 Illustration for the case of H1 ∼= P3 × Pm1 (m1 ≥ 4)

it follows that s8 ⊆ G. Then G − s8 − s9 − s′′
3 − s6 has an isolated vertex v7. These

contradictions show that s1 � G. Similarly, s′
1, s′′

1 , s′′′
1 � G.

Let us label the squares of H1 as in a of Fig. 13. h1, h2, . . . , hm1−1 and
h′

1, h′
2, . . . , h′

m1−1 are its possible adjacent squares. By Claim 3, we deduce that no
three successive squares of h1, . . . , hm1−1 or h′

1, . . . , h′
m1−1 belong to G. Suppose

that two successive squares of them, say hi and hi+1, belong to G. Since m1 ≥ 5,
either si−1 ⊆ H1 or si+2 ⊆ H1, say si−1 ⊆ H1. Then si−2 ⊆ G since otherwise v1 is
an isolated vertex of G − s′

i−1 − hi . Then either the component of G − si−1 − hi+1
containing v2 or the one of G − si−2 − s′

i −hi+1 is odd, as in b of Fig. 13. This contra-
diction shows that no two successive squares of h1, h2, . . . hm1−1 or h′

1, h′
2, . . . h′

m1−1
belong to G. But now, as is illustrated in c of Fig. 13 the component of G − S2 − S′

4
that contains u1, u2, . . . u5 has an odd number of vertices. This contradiction shows
that m1 ≤ 4. Therefore m1 = 4.

A similar argument shows that none of the squares s1, s′
1, s′′

1 and s′′′
1 illustrated in a

of Fig. 14 belong to G when H1 = P3 × P4. Other possible adjacent squares of H1 are
labelled in b of Fig. 14. Since H1 is a maximal regular grid graph in G, at least one of
s1, s2 and s3 is not contained in G. If s2 ⊆ G, assume without loss of generality that
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Fig. 13 Illustration for the case of H1 ∼= P3 × Pm1 (m1 ≥ 4)

Fig. 14 Illustration for the case
of H1 ∼= P3 × P4
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s3 � G, then the vertex v illustrated in c of Fig. 14 is an isolated vertex of G −s2 −h1.
This contradiction shows that s2 � G. Similarly, s5 � G.

If s7 ⊆ G, then s1 ⊆ G since otherwise G would contain a cut vertex. But now, as
is illustrated in d of Fig. 14, the component of G − s7 − h3 that contains the vertex
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v′ has an odd number of vertices. This contradiction shows that s7 � G. Similarly,
s8, s9, s10 � G. Claim 4 follows.

The above four claims and Lemma 3.1 show that every 4-resonant polyomino
graph G is either the graph G0 or the union of some P4 × Pm1 , P4 × Pm2 , . . . , P4 ×
Pmi (m1, m2, . . . , mi ≥ 3) together with some 4-resonant catacondensed polyomino
graphs which connecting them, and the connecting positions satisfy the structures of
(B) and (C) for any P4 × Pm j . And so, the necessity follows.

We continue to prove sufficiency. For any maximal regular polyomino subgraph
P4 × Pmi with mi ≥ 3, if its adjacent squares satisfy the structure (B) then it is called a
B-type subgraph of G; if its adjacent squares satisfy the structure (C) then it is called
a C-type subgraph of G.

Case 1. G � G0.
Let P4 × Pm1 , . . . , P4 × Pmn be all the maximal regular polyomino subgraphs of

G with m1, . . . , mn ≥ 3. If n = 0, by Lemma 3.1, G is k-resonant for any k ≥ 4.
If n = 1, consider at first the case when P4 × Pm1 is a B-type subgraph, referring to

B of Fig. 2. a, b, c, d are the four possible adjacent squares of P4 × Pm1 . To show that
G is k-resonant (k ≥ 4) in this case, we use induction on m1. Let F be an arbitrary
set of disjoint squares of G. If m1 = 2, G is catacondensed and by Lemma 3.1 it
is k-resonant (k ≥ 4). Suppose that G is k-resonant (k ≥ 4) for smaller integers.
Consider large integer m1. Delete F firstly. If some of the four a, b, c, d belong to
G but not to F , then delete the two edges of the square that connect P4 × Pm1 and
the outside. We conclude by Lemmas 3.1, 3.2 and the induction hypothesis that the
resultant graph has perfect matchings. And so, G is k-resonant in this case.

Consider secondly that P4 × Pm1 is a C-type subgraph of G, which implies that
m1 = 4. When we delete k vertex-disjoint squares from G, at least one square of e and
f is not deleted, say e. Since the deletion of the two edges of e that connect P4 × P4
and another polyomino subgraph results in a catacondensed polyomino subgraph and
another subgraph with a B-type P4 × P4. By Lemma 3.1 and the observation obtained
in the previous paragraph, we deduce that G is k-resonant.

If n ≥ 2, as is observed in the case when n = 1, the deletion of any k vertex-disjoint
squares and the edges in squares a, b, c, d that connect P4 × Pm1 and other polyo-
mino subgraphs results in a graph G ′ with every component being either an isolated
edge, or a k-resonant (k ≥ 4) catacondensed polyomino graph, or a polyomino graph
with less maximal regular polyomino subgraphs of the form P4 × Pmi with mi ≥ 3.
By induction on n, G ′ has a perfect matching. And so, G is k-resonant in case 1.

Case 2. G ∼= G0.
As is illustrated in Fig. 15, let G1 and G2 be the two subgraphs isomorphic to

P4 × P4 and F be the set of any k vertex-disjoint squares of G.

Subcase 1. Squares a, b, c, e, f, g � F . By Lemma 3.2, Gi − d − F has perfect
matchings, where i = 1, 2. And so, G − F has perfect matchings.

Subcase 2. At least one of the squares a, c, e and g belongs to F . By symmetry, we
may assume without loss of generality that a ⊆ F . Then c, d, g � F . As is shown in
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Fig. 15 Illustration for case 2

1G

2G

ab

c d

e f

g

Fig. 16 A 3-resonant but not
4-resonant polyomino graph G

v

case 1, both G1 ∪ e − F − e and G2 ∪ a − F − a have perfect matchings. And so,
G − F has perfect matchings in this case.

Subcase 3. Squares a, c, d, e, g � F but b ⊆ F or f ⊆ F . By symmetry, assume
without loss of generality that b ⊆ F . If f ⊆ F , then F = {b, f } and G − F has
perfect matchings since it is an even cycle in this case; if f � F , since both G1 − F
and G2 − d − F have perfect matchings, G − F also has perfect matchings in this
case. And so, sufficiency follows. ��

Proof of Theorem 2.3: The graph G illustrated in Fig. 16 is not 4-resonant since the
deletion of the four squares containing black points separates an isolated vertex {v}
from G. By Corollary 2.1, it suffices to show that G is 3-resonant.

Let us delete two arbitrary vertex-disjoint squares C1 and C2 from a regular polyo-
mino graph H = P2m × P2n . If these two cycles lie in a same subgraph Q with form
P2 × P2n or P2m × P2, then both G − Q and Q − C1 − C2 have perfect matchings;
if otherwise, then C1 ⊂ Q1 and C2 ⊂ Q2, where Q1 and Q2 are two vertex disjoint
subgraphs both having form P2 × P2m or both having the form P2n × P2. Clearly,
G − Q1 − Q2, Q1 − C1 and Q2 − C2 each contains perfect matchings. And so, we
have the following Proposition 4.1.

Proposition 4.1 For any integers m, n ≥ 1, the polyomino graph P2m × P2n is 2-res-
onant.
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Lemma 4.2 [36] Let G be a plane bipartite graph with more than two vertices. Then
G is 1-resonant if and only if G is elementary.

Lemma 4.3 [36] Assume that a 2-connected plane bipartite graph G is weakly ele-
mentary. Then G is elementary if and only if the exterior face of G is resonant, i.e., G
has a perfect matching M such that the edges of the outer boundary are alternatively
in and out of M.

Lemma 4.4 [36] Let G be a connected plane bipartite graph that has a perfect match-
ing. If the interior vertices of G (not lying on the boundary of the infinite face of G)
all have the same degree then G is weakly elementary.

By the above three lemmas from Theorems 2.4, 2.10 and 2.11 of [36], we have:

Proposition 4.5 If the exterior face of a 2-connected polyomino graph G with at least
one perfect matching is resonant, then G is 1-resonant.

As is illustrated in (a) of Fig. 17, let L1 = P10 × P6, L2 = P6 × P10 be two
subgraphs of G and L = L1 ∩ L2 ∼= P6 × P6. For any three vertex-disjoint squares
of G, we shall illustrate that G − s1 − s2 − s3 has a perfect matching. The illustra-
tions are depicted in Fig. 17, they have the same labeling as the corresponding distinct
cases. These illustrations divide G − s1 − s2 − s3 into several vertex-disjoint sub-
graphs bounded by the bold lines. By Propositions 4.1, 4.2 and Lemmas 3.1, 3.2, these
bounded subgraphs have perfect matchings respectively. And so, G is 3-resonant. By
the symmetry of L1 and L2, the distinct cases can listed as follows.

(a) Squares s1, s2, s3 and graph L are vertex-disjoint.
(b) Exactly one of s1, s2 and s3 intersects L , say s1.

(b1) s1 ⊆ L .
(b2) s1 � L .

(c) Exactly two of s1, s2 and s3 intersect L , say s1 and s2.
(c1) s1, s2 ⊆ L .
(c2) s1 � L but s2 ⊆ L .

(c21 ) s1, s2, s3 ⊆ L1 lie in three adjacent rows.
(c22 ) s1, s2, s3 ⊆ L1, and s1, s3 lie in two adjacent rows of L1 but s2

does not lie in the adjacent row with either of them,
(c23 ) s1, s2, s3 ⊆ L1 and only s1, s2 lie in two adjacent rows of L1.
(c24 ) s1, s2, s3 ⊆ L1 do not lie in the adjacent rows (may be in the same

row).
(c25 ) s1, s2 ⊆ L1 but s3 ⊆ L2. The division is the same as that of

case c1.
(c3) s1, s2 are both adjacent to L , i.e., s1, s2 � L .

(c31 ) s1, s2 ⊆ L1 but s3 ⊆ L2.
(c32 ) s1, s2, s3 ⊆ L1.
(c33 ) s1, s3 ⊆ L1, s2 ⊆ L2 and s1, s2 lie in the adjacent columns.
(c34 ) s1, s3 ⊆ L1, s2 ⊆ L2 and s1, s2 do not lie in two adjacent columns

but s2, s3 do.
(c35 ) s1, s3 ⊆ L1, s2 ⊆ L2, s2 does not lie in the adjacent columns

with s1 or s3 but s1 and s3 lie in two adjacent columns.
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Fig. 17 Illustration for the proof of 3-resonance of G′
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(c36 ) s1, s3 ⊆ L1, s2 ⊆ L2, no two of s1, s2 and s3 lie in the adjacent
columns.

(d) s1, s2, s3 all intersect L .
(d1) s1, s2, s3 ⊆ L1 lie in three consequent rows of L1. The division is similar

to case c21 .
(d2) s1, s2, s3 ⊆ L1 lie either in the same rows or in disjoint rows. The division

is similar to case c24 .
(d3) s1, s2, s3 ⊆ L1, exactly two of them lie in adjacent rows. The division is

similar to case c32 .
(d4) s1, s2 ⊆ L1, s3 ⊆ L2 and s2, s3 � L . In this case, these three squares

can not lie in the consequent three rows or columns. Assume without loss
of generality that they are not in three consequent columns. If no two lie
in adjacent columns, then the division is similar to case c36 .

(d5) s1, s2 ⊆ L1, s3 ⊆ L2 and s2, s3 � L . If exactly two of them, say s1 and
s2, lie in adjacent columns. The division is similar to case c35 . Otherwise,
s1 or s2 lies in the adjacent column with s3, then the division is illustrated
by d5 in Fig. 17. ��
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21. M. Randić, Conjugated circuits and resonance energies of benzenoid hydrocarbons. Chem. Phys.
Lett. 38, 68–70 (1976)
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